
Agile Doesn’t Scale—
It Multiplies
By Jeremy Jarrell

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

2

Agile practices have seen tremendous growth

in recent years. More teams than ever have

embraced a lightweight way of working and

have found themselves more responsive to

the needs of both their customers and their

broader market. Teams adopting an agile

way of working can be found in nearly every

industry and every type of organization;

however, big enterprises have seen one of the

largest shares of growth.

While there are many reasons for an

enterprise to consider a move to agile

practices, the most common reason is a

need to compete with smaller, more nimble

competitors. These competitors are often

able to respond to customer feedback in a

more timely manner than their bigger and

more established counterparts, which has

forced many large enterprises to consider

alternative approaches to delivering value to

their customers.

But for many organizations who have seen

success embracing agile practices, these

early advances have only begged the

question: How do we scale this success to

our entire organization? In fact, the search

for the answer to that question has become

so popular that it has spawned a multitude

Agile Doesn’t Scale—It Multiplies

of new methodologies, certifications, and

even conferences all dedicated to the single

question: How do you scale your success with

agile?

Not so fast

Before you consider how to scale agile in your

organization, you must first consider what the

specific goals are that you wish to achieve

with scaling.

When an organization begins to consider

scaling their agile practices, they are often

interested in scaling the early benefits they’ve

experienced with their first agile team. For

example, if that first team was able to deliver

a successful product more quickly than had

previously been possible, then increasing that

organization’s investment in the same team

should result in that team producing even

more value next time. Right?

Before you consider how to scale

agile in your organization, you

must first consider what the

specific goals are that you wish

to achieve with scaling.

3

Faster vs. more frequent

Despite popular misconceptions, agile teams

do not go faster than non-agile teams. In fact,

given that many teams beginning an agile

practice must adopt a new way of working, it’s

not unusual for those teams to actually slow

down while adjusting to this new way of life.

So why is it that many agile teams appear

to produce work more quickly than their

non-agile counterparts? The answer is that

Unreleased

Released

Ve
lo

ci
ty

4

Iteration (weeks)

1 2 3

Team 1
Team 2

successful agile teams reduce their time to

market by shipping more frequently, rather

than simply working faster.

Teams who ship more frequently (like Team

1 in the graphic below) experience a faster

time to market while working at the same—or

even reduced—rate as teams who only ship

infrequently (e.g., Team 2).

This subtle difference between working faster

and shipping more frequently is critical for

your organization to understand if it is to

have any success in scaling its agile efforts.

Otherwise, you risk amplifying the wrong

aspects of your team by attempting to

capitalize on this misunderstood success.

While understandable, unfortunately this

approach is often mistaken. One reason is that

it demonstrates a subtle misunderstanding

of the benefits that adopting an agile process

actually brought to the organization.

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

4

The fallacy of bigger

So what happens when an organization

misunderstands the true roots of their agile

success? If they believe that their teams are

actually working faster—and thus producing

more work—as a result of adopting agile

practices, then that organization may be

tempted to try and build on that success by

simply increasing the size of that team.

of these increases. But these increases are

best made in a small and incremental manner

and even then, the resulting increases in

productivity still may not arrive for some time.

Why scaling can be so hard

Many of the qualities that make agile teams

successful can also be notoriously tough to

scale. For example, agile methodologies place

an emphasis on interpersonal communication

over written documentation. While few would

doubt that interpersonal communication

conveys a depth of information far greater

than written communication, it’s also true that

conversations become more difficult when

more people are added to them.

As teams increase in size, keeping all

members of that team up-to-date about

the latest news relevant to their teams

becomes increasingly difficult, as the number

of communication pathways increases

exponentially along with the size of that team.

Many of the qualities that make

agile teams successful can also

be notoriously tough to scale.

While most organizations instinctively

understand that doubling the size of a

successful team will not consequently double

the output of that same team, few can resist

the temptation to add a few new members to

a team whenever a convenient opportunity

arises. While agile teams are not immutable

and regular team changes are a way of life

for many organizations, the danger lies in

believing that any increase in team size will

also automatically result in an increase in

output.

Successful teams can have their ranks

increased and an organization can reap

corresponding gains in productivity as a result

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

5

An alternative approach to scaling

But what if there was a way to capitalize on

the benefits your organization has gained by

adopting agile practices without incurring

the problems that can arise from increasing

your team size? It turns out the best way to

increase your organization’s investment in

agile is not to scale it, but to multiply it.

What if instead of increasing the size of a

single agile team, you simply created more

agile teams? Creating multiple, smaller teams

can often be a more successful path to scaling

agile since small team sizes naturally alleviate

the exponential explosion in communication

pathways discussed earlier.

But while scaling an agile team’s

strengths can be difficult,

amplifying their problems

happens almost naturally.

But while scaling an agile team’s strengths

can be difficult, amplifying their problems

happens almost naturally.

Many teams find that when they first find

success with agile methodologies, this new-

found responsiveness to customer needs can

lead to a high degree of churn in their product

plans. If it's not brought under control quickly,

this churn only increases as the size of the

team grows. As a result, the team may soon

find itself thrashing as it moves quickly from

one product idea to the next, rarely stopping

to give each idea the attention necessary

to truly deliver the desired end result to the

customer.

But some problems plaguing a team aren’t

due only to that team’s success with agile;

some problems may lurk regardless of a

team’s chosen approach. For example, you

may find that your team has personality

conflicts that have started to emerge, or

rifts that are starting to grow between

different factions. In either case, if you

fail to address these problems before

investing in increasing the size of your

team, you’re likely to find that scaling

your team will only serve to amplify these

problems, not alleviate them.

In addition, the chances for misinterpretation

and confusion also begin to increase

dramatically along with team size.

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

6

Creating a cross-functional team

However, successful agile teams are more

than just small—they are also cross-functional.

Cross-functional teams have all of the skills

necessary to bring an idea from fruition to

reality within the context of the work they are

undertaking. While this may sound ambitious,

it’s actually easier than you may first think.

For one reason, for a cross-functional team

to be successful, they only need the specific

skills that are necessary to deliver their piece

of the overall product. For example, a team

developing an API that will be delivered as a

microservice does not need UI design skills

or even front-end development skills to be

successful. Instead, the cross-functional skills

that this team needs to be successful may

be limited to those like strong server-side

development, RESTful API design, and robust

automated testing.

specific needs that will dictate which skills

are necessary for them to truly be considered

cross-functional.

Also remember that only the team itself needs

to be cross-functional—not every person on

the team. In the example of our API team,

this means that every team member does

not need to possess strong server-side

development skills and good automated

testing skills. These skills only need to be

present across the team as a whole.

However, while not every individual on the

team needs to possess the full breadth of

skills necessary to successfully deliver the

product to market, each individual does need

to be adept at collaborating with other team

members who possess different skill sets.

This is because one skill can only amplify the

other skills if the holders of those skills can

successfully work together.

Finally, remember that the skills the team

will need in order to remain cross-functional

are likely to evolve over time. For example,

returning to our API team, as the team

nears their first release, they may also

need the skills necessary to successfully

deploy containerized microservices to their

production environment. As a result, this will

now become a critical component of their

cross-functional skill set.

API

Server-Side
Development

Automated
Testing

Mobile APP

Server-Side
Development

UI Design

On the other hand, a team developing a

mobile app that will consume this API may

only require native mobile app development

and UI design skills to be successful. In

either case, each team will have its own

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

7

Empowering your team to be

successful

Team success is about more than simply

being cross-functional, however. Successful

small teams must also be empowered to

do whatever is necessary to deliver value

to their customers. This means each team

must be afforded the ability to make the

right decisions for their product and their

customers in a timely manner.

But this doesn’t mean that an agile team must

operate outside of authority in order to be

successful. The best product managers work

within their teams to set a clear vision and

strategy that their teams can execute against,

as well as build support from the broader

organization so they can make those tough

decisions when the time comes.

Getting the most from multiplying

Although splitting your organization into

multiple smaller teams does have significant

advantages over a single large team when it

comes to scaling, this approach is not without

its challenges.

First, the small sizes of these teams means

that they are more sensitive to change than

larger teams. For example, if a team member

is unexpectedly out of the office for a week,

this will have a much greater impact on a team

of only five people than it would on a team of

15. To help address these types of issues, your

team will need to invest heavily in knowledge

transfer across the entire team to better

prepare them for instances when a key team

member is suddenly unavailable.

Second, aligning your teams around specific

areas of your product—rather than layers

of your product’s codebase—will increase

each team’s ability to deliver the value

in their specific area of the product in an

independent manner. In addition, reducing the

interdependencies between teams by aligning

them around specific business problems also

reduces the chance of collisions between

teams as they work to deliver value to your

customers.

Third, effectively sharing the vision for the

product only becomes more challenging as

the number of teams increases. To combat

this, effective product managers take special

care to ensure that the vision for the product

is properly disseminated across all teams so

that the work each team creates is true to

that vision. A great way to accomplish this

is by holding regular visioning sessions with

each team to better communicate to them

the long-term vision for the product, as well

as where they fit into that vision. Tooling that

can provide teams with a high-level view of

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

8

the product roadmap—as well as illustrate

how their specific tasking contributes to

that roadmap—can be invaluable for these

discussions.

And finally, you’ll need a plan for how each

of these individual teams will interact

successfully with one another. Increasing the

number of separate teams contributing to

a product will also increase the complexity

of delivering that product. This is because

communication pathways between teams

increase exponentially as the number of

teams grows, just as communication pathways

between individuals increase as the size of

a team grows. Therefore, you’ll need to take

special steps to keep all of your teams on

the same page so they can work together as

effectively as possible.

One way to do this is by synchronizing the

iteration schedules of all teams. This means

that all teams should operate in iterations

of consistent lengths that begin and end on

the same days. The result will be a single and

aligned schedule that will greatly simplify the

long-term planning for your product.

In addition, encouraging your teams to adopt

consistent methods and tooling can be a

great way to help your teams work together

more efficiently. Having consistent methods

and tooling across teams not only removes

a common point of friction that can arise

when multiple teams need to collaborate to

address a shared problem, but it also reduces

the challenges that can occur when a team

member from one team needs to relocate to

another team.

Although long-running teams are ideal,

change is inevitable in many organizations.

Encouraging a consistent approach to

solving problems increases the portability of

your team members and allows you to take

advantage of opportunities to arrange your

teams in the most effective manner.

Encouraging your teams to adopt

consistent methods and tooling

can be a great way to help your

teams work together more

efficiently.

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

9

Keeping a consistent vision

Once the iterations of all of your teams are

in alignment and all teams are working in a

relatively consistent manner, you can begin

kicking off these iterations with collaborative

planning sessions involving all teams.

Although each team will still need to create

their own more detailed plans for their area of

work, beginning these planning sessions with

a high-level vision of what the next iteration

should accomplish can be very valuable for

helping all of your teams understand how they

must work together to accomplish that vision.

A similar event could also be held at the

completion of each iteration, in which the work

each team completed during that iteration can

be shared with other teams. These sessions

can be invaluable for helping your teams

understand how they are working in concert

to realize the product vision.

However, this collaboration must not only

happen at the beginning and end of an

iteration. For teams to truly work together

effectively, they must also stay in touch

throughout the entire iteration. Regular

check-in and coordination sessions between

representatives of each team will ensure that

everyone is on the right track to delivering

a great product vision, while tooling that

emphasizes communication across teams and

provides visibility into each team’s progress

can help ensure that all teams are working

together as effectively as possible.

Making this work for you

Once they’ve embraced agile practices, few

organizations doubt the positive impact it

can make on how they deliver software to

their customers. However, even after seeing

success with their first foray into agile

practices, many organizations find that scaling

that success beyond a single team is not for

the faint of heart.

Here are a few tips that will help your

organization find widespread success with

scaling its agile practice:

• Prioritize multiple small teams over a

single large team.

• Organize your teams around distinct

feature areas and business functions

rather than layers of your codebase.

For teams to truly work

together effectively, they must

also stay in touch throughout

the entire iteration.

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

10

• Create teams that are cross-functional

and possess all of the skills necessary

to deliver working software to your

customers.

• Encourage consistent tooling and

methods across teams to enable them to

more easily interact and to increase the

portability of individual team members.

Scaling for success

Many organizations find success early on

when adopting an agile process with a single

team. But the real challenge often occurs

once that organization begins to build on its

success by scaling agile to a larger part of the

organization.

While simply increasing the size of that first

successful team may often seem like a natural

next step, many organizations find that a

more promising path to success is to replicate

the practices of their first agile teams with

other teams in their organization. This more

promising path is proof that agile doesn’t

scale—it multiplies.

A
g

ile
 D

o
e

sn
’t S

cale
—

It M
u

ltip
lie

s

About the author

Jeremy Jarrell is an agile coach who

helps teams get better at doing what

they love. When he’s not mentoring

Scrum Masters or Product Owners,

Jeremy loves to write on all things

agile. You can read more of his

thoughts at www.jeremyjarrell.com,

see his videos at Pluralsight, or follow

him on Twitter @jeremyjarrell.

Pivotal Tracker is the story-based

project planning tool that makes

collaboration easy and keeps your

teams in sync.

Learn more at: www.pivotaltracker.com

